Non-Symmetrical Nickel(II)dithiocarbamates with NiS₂P₂-Chromophore

by R. Pastorek¹, J. Kameníček^{1*}, J. Husárek¹, M. Pavlíček¹, Z. Šindelář¹ and Z. , ák²

¹Department of Inorganic and Physical Chemistry, Palacký University, 771 47 Olomouc, Czech Republic ²Department of Inorganic Chemistry, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

(Received June 6th, 2002; revised manuscript July 18th, 2002)

Non-symmetrically substituted Ni(II)dithiocarbamate complexes with NiS₂P₂ chromophore of composition [Ni(bzⁱprdtc)(PPh₃)₂]X, [Ni(bzⁱprdtc)(PPh₃)₂]BPh₄·3H₂O (bzⁱprdtc⁻ = benzylisopropyldithiocarbamate, PPh₃ = triphenylphosphine, BPh₄⁻ = tetraphenylborate, $X = ClO_4^-$, PF₆⁻), [Ni(cetdtc)(PPh₃)₂]X, [Ni(cetdtc)(PPh₃)₂]PF₆, [Ni(cetdtc)(PBut₃)₂]X (cetdtc⁻ = cyclohexylethyldithiocarbamate, PBut₃ = tributylphosphine, $X = ClO_4^-$, BPh₄⁻) have been isolated. These complexes have been characterized by elemental analysis, IR and UV-VIS spectroscopy, thermal analysis, magnetochemical and conductivity measurements. X-ray structural analysis of [Ni(bzⁱprdtc)(PPh₃)₂]ClO₄·0.5H₂O confirms the NiS₂P₂ chromophore with a slightly distorted square arrangement around the central atom.

Key words: non-symmetrical dithiocarbamate nickel(II) complexes, synthesis, physicochemical study, X-ray structural analysis

There is only little information about non-symmetrically substituted Ni(II) dithiocarbamates with NiS₂P₂ chromophore available. For instance, complexes with a bidentate P-ligand 1,2-bis(diphenylphosphine)ethane (dppe) of the type [Ni(R₁R₂Nadtc)(dppe)]ClO₄ [1] have been described. Dithiocarbamates were derived from glycine (R₁ = H, R₂ = C₂H₂O₂⁻), methionine (R₁ = H, R₂ = C₅H₈O₂S⁻), tryptophan (R₁ = H, R₂ = C₁₁H₉NO₂⁻) and sarcosine (R₁ = CH₃, R₂ = C₂H₂O₂⁻); dtc⁻ = S₂CN⁻. By X-ray structural analysis of [Ni(MeEadtc)(dppe)]BPh₄·CH₂Cl₂ [2] (Me = methyl, Ea = 2-hydroxyethyl) it was confirmed a distorted square arrangement of NiS₂P₂ chromophore. As for monodentate ligands, only PPh₃ was used and complexes of the [Ni(R₁R₂dtc)(PPh₃)₂]ClO₄ type (R₁ = H, CH₃; R₂ = C₂H₃O₂, C₅H₉O₂S, C₁₁H₁₀NO₂) [1] have been isolated and X-ray structural analysis of [Ni(MeEadtc)(PPh₃)₂]ClO₄ [2] confirmed a distorted square coordination sphere as well.

We focused on nickel(II) benzylisopropyl- and cyclohexylethyldithiocarbamates and their reaction with monodentate P-ligands with the aim to study the influence of the dithiocarbamate, type of P-ligand and anion X on the structure and properties of newly synthesized complexes.

^{*}Author for correspondence.

EXPERIMENTAL

Materials and methods: Triphenylphosphine (99%) and LiClO₄·3H₂O were from Aldrich Co., tributylphosphine (85%), NaClO₄·H₂O and K[PF₆] were from Fluka Co., the others from Lachema Co (p.a. purity). The content of nickel was determined by chelatometric titration using murexide as an indicator [3]; chlorine was determined by Schöniger method [4]. The elemental analyses (C, H, N, S) were performed on an EA 1108 instrument (Fisons). The room temperature magnetic susceptibilities of all compounds were measured using Faraday method with Co[Hg(NCS)₄] as a calibrant. Conductivities were measured using a Conductivity Hand-Held Meter LF330 (WTW GmbH) at 25°C. Diffuse-reflectance electronic absorption spectra (45000–11000 cm⁻¹) were carried out on a Specord M40 (Carl Zeiss, Jena), IR spectra (4000–300 cm⁻¹) were recorded on a Specord M80 (Carl Zeiss, Jena) using nujol technique. The thermal analysis was performed on a Exstar 6000, TG/DTA 6200 (Seiko, Japan; sample weight 9.5–10.3 mg, temperature range 20–1150°C, gradient 2.5°C/min). Melting points were determined by Boëtius Rapido melting point apparatus (Wägetechnik PHMK 79/2106).

Syntheses: $[Ni(bz^i prdtc)(PPh_3)_2]X, (X = ClO_4^-, BPh_4^-, PF_6^-):$ In the case of ClO_4^- salt the suspension of fine powdered initial complex $[NiCl(bz^i prdtc)(PPh_3)][5](1 mmol), PPh_3(2 mmol) and LiClO_4 · 3H_2O(2 mmol) in 25 cm³ methanol was stirred under reflux for 3 h. The resulting orange-colored crystalline substance was filtered, washed with n-hexane and dried at 40°C under an infra-lamp; yield 29%. In the case of BPh_4^- salt: <math>[NiCl(bz^i prdtc)(PPh_3)](1 mmol), PPh_3(2 mmol) in 5 cm³ CHCl_3 and Na[BPh_4](1 mmol) in 5 cm³ methanol were used; in the case of PF_6^- salt – as above, but instead Na[BPh_4] – K[PF_6](1 mmol) and PPh_3 in 5 cm³ acetone was used. After mixing appropriate solutions a slight dimness was observed that disappeared by adding CHCl_3. After reflux (4 h) red solutions were filtered and orange-brown (X = BPh_4^-), resp. red-violet (X = PF_6^-) substances were obtained by free crystallization over two days. The resulting compounds were washed with n-hexane and dried at 40°C. Yield: 28% and 26%, respectively.$

[Ni(cetdtc)(PPh₃)₂]X, (X = ClO₄⁻, BPh₄⁻, PF₆⁻): The complexes were synthesized by the reaction of a suspension of fine powdered Na(cetdtc)·2H₂O [6] (1 mmol), PPh₃ (2 mmol), NiCl₂·6H₂O (1 mmol) in 30 cm³ methanol. The mixture was stirred under reflux for 1.5 h and NaClO₄·H₂O, resp. Na[BPh₄] or K[PF₆] (1 mmol) was added. After of 1 h reflux, red solutions (X = ClO₄⁻, PF₆⁻) were filtered and crystals were obtained by evaporation of solvent and decantation with n-hexane, filtration and washing with water and (after drying by air) with ether. In the case of X = BPh₄⁻ an orange substance appeared during stirring under reflux; it was filtered, washed with n-hexane, toluene and ether. All samples were dried at 40°C. Yield: 58%, 56% and 57%, respectively.

 $[Ni(cetdtc)(PBut_3)_2]X, (X = ClO_4^-, BPh_4^-):$ The molar ratio of components is the same as above (PBut_3 instead of PPh_3 was used). Dark-red solutions were filtered; in the case $X = ClO_4^-$ an oily product was formed and an addition of petroleum ether was necessary to obtain an orange powder. The final product was obtained by re-crystallization from methanol. For $X = BPh_4^-$ orange colored crystals precipitated. Both products were washed with methanol and dried at 40°C. Yield: 33% and 39%, respectively.

X-ray crystallography: X-ray measurements were performed on a KUMA KM-4 diffractometer with graphite monochromated MoK_{α} radiation ($\lambda = 0.71073$ Å) using an area sensitive detector. The structures were solved by direct methods using the SHELXS-97 program [7]. The structures were refined anisotropically by the full-matrix least-square procedure on F^2 using a SHELXL-97 program [8]. Most H-atoms were found from difference Fourier maps and they were refined isotropically. Additional calculations were made using PARST 95 program [9]. Important crystallographic parameters are summarized in Table 2.

RESULTS AND DISCUSSION

Important results from physico-chemical measurements are given in Table 1. All compounds are diamagnetic and electrolytes 1:1 in acetone [10], which is in line with the assumption of the square coordination of NiS₂P₂. The complexes (1), (4) and (7) exhibit non-split maxima due to ionic character of ClO_4^- group: v_3 (in interval 1076–1090 cm⁻¹) and v_4 (620–622 cm⁻¹) [11]. The assumption of square polyhedron

Complex* Color	$\lambda_{\rm M}{}^{\rm a}$		UV,	/VIS			IR (c	:m ⁻¹)				TA (°C	<u> </u>		
	$(\mathrm{Scm}^2 \mathrm{mol}^{-1})$		$(\times 10^{3})$	cm^{-1}		v(C S)	v(C N)	$\nu_{3}(ClO_{4}^{-})$	$v_4(ClO_4^-)$	Н		E_{n}	Η	×	
(1) orange	124.9	15.4	19.8	29.4	31.2	995w	1510w	1076m	622w			no study			
(2) orange-brown	101.8		19.5		31.2	992m	1520m	I	I	58	99	79 109	133	159	254
(3) red-violet	120.0		19.6		31.0	995m	1525m	I	I	101		I		241	294
(4) orange	132.9		19.2		31.4	992s	1508s	1090 vs	622m			no study			
(5) orange	103.3		19.2		31.2	995m	1522m	I	I	113 ^b		119	115	131	167
(6) dark-orange	122.9		19.0	30.8	36.0	995m	1525m	I	I	142		I	197 217	226	279
(7) orange	127.8		20.2	23.9	33.3	1005m	1508s	1090 vs	620m			no study			
(8) orange	104.3		19.5	23.4	33.1	970m	1512s	I	I	116^{b}		116		123	148

(5) [Ni(cetdtc)(PPh₃)₂]BPh₄; (6) [Ni(cetdtc)(PPh₃)₂]PF₆; (7) [Ni(cetdtc)(PBut₃)₂]CIO₄; (8) [Ni(cetdtc)(PBut₃)₂]BPh₄.

Figure 1. Thermal analysis of [Ni(cetdtc)(PBut₃)₂]BPh₄.

is supported also by electronic spectra in nujol – all compounds exhibit d-d absorptions (15400–23900 cm⁻¹) characteristic for ${}^{1}A_{1g} \rightarrow {}^{1}A_{2g}$ transitions of low-spin square Ni(II) complexes [12]. The maxima over 30000 cm⁻¹ can be assigned to intra-ligand transitions in the S₂CN⁻ group [13]. IR-vibrations v(C^{...}N) (1508–1525 cm⁻¹) and v(C^{...}S) (970–1005 cm⁻¹) typical of dithiocarbamates [13] were also observed in all complexes. Samples (3) and (6) exhibit very strong PF₆⁻ vibrations near 832 cm⁻¹ and 830 cm⁻¹, respectively [14].

Thermal analysis was studied only for (2), (3), (5), (6) and (8); complexes with ClO₄ were not examined for safety reasons. [Ni(cetdtc)(PBut₃)₂]BPh₄ (Fig. 1) exhibits a small sharp endo-effect at 116°C (melting point is 117°C). TG-curve recorded a slight mass increasing connected with a large exo-effect on DTA-curve (top at 123°C). This phenomenon was described for complexes containing Ni–P bonds [15] and can be explained by incorporation of oxygen into these bonds. Mass increasing is overlapped with decomposition of the organic part of the compound (exo-effect at 148°C). Complex [Ni(cetdtc)(PPh₃)₂]BPh₄ exhibits a sharp exo-effect at 115°C (insertion of oxygen), followed by a melting point (endo-effect at 119°C; apparatus: 121°C). Decomposition of the organic part is connected with a mass decreasing and two exo-effects (131°C and 167°C). Thermal behavior of [Ni(cetdtc)(PPh₃)₂]PF₆ complex is similar. Dehydration of [Ni(bzⁱprdtc)(PPh₃)₂]BPh₄·3H₂O starts at 58°C and is connected with two endo-effects (the smaller at 66° ; the bigger at 79°); the endo-effect at 109°C is due to the melting. A water-free complex is on TG-curve characterized by a plateau in interval 96-111°C ($\Delta M_{found/calcd} = 4.1/4.5\%$). A sharp exo-effect (insertion of oxygen) at 133° was also recorded, but no mass increasing appeared due to the fast thermal decomposition of the compound (exo-effects at 159°C and 254°C). [Ni(bz¹prdtc)(PPh₃)₂]PF₆ decomposes differently – neither

exo-effect (incorporation of oxygen) nor endo-effect (melting of sample) were detected, only exo-effects (241°C and 294°C, decomposition of organic part) were found.

X-ray structural analysis of the $[Ni(bz^iprdtc)(PPh_3)_2]ClO_4 \cdot 0.5H_2O$ (Fig. 2) confirms the above conclusions (basic crystallographic data are collected in Table 2). The obtained results show that central atom of nickel possesses a distorted square coordination with nonequal Ni–S and Ni–P bond lengths and belonging angles. The deviations of ideal NiS₂P₂ plane (in Å) are calculated [9] for Ni: 0.007, S1: 0.137, S2: -0.139, P1: -0.124, P2: 0.107. Existence of π -bonds system in dithiocarbamate is illustrated by smaller bond distances of C1–N1 (1.304 Å), C1–S1(1.720 Å) and C1–S2 (1.719 Å) as compared to the literature values [16] for simple σ -bonds (C–N: 1.47 Å and C–S: 1.81 Å) (Table 3). The distance between chlorine and nickel (10.51 Å) shows that ClO₄ is out of the nickel coordination sphere, which is in good agreement with physico-chemical measurements. No significant possible hydrogen bonds [9] were confirmed; one molecule of water has been found in the elemental cell.

Figure 2. Molecule of [Ni(bzⁱprdtc)(PPh₃)₂]ClO₄·0.5H₂O (solvent and H-atoms are omitted).

Thus, we can conclude that the type of dithiocarbamate, PR_3 and anion X⁻ exhibit a significant influence on the thermal behavior of complexes, but practically no influence on the shape of the coordination polyhedron.

Supplementary data: Material involving structure data has been deposited in the Cambridge Crystallographic Data Centre, Registry No. CCDC 186674. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

Molecular formula	$C_{47}H_{45}CINNiO_{4.5}P_2S_2$
Formula weight	916.06
Temperature	120(2) K
Wavelength	0.71073 Å
Space group	$P\overline{1}$
Unit cell dimensions	$a = 12.655(3)$ Å $\alpha = 92.80(3)^{\circ}$
	$b = 12.884(3) \text{ Å} \beta = 107.01(3)^{\circ}$
	$c = 13.924(3) \text{ Å} \gamma = 94.60(3)^{\circ}$
Volume; Z; density	2157.7(9) Å ³ ; 2; 1.410 Mg/m ³
Absorption coefficient	0.729 mm^{-1}
<i>F</i> (000)	954
Crystal size	$0.35 \times 0.25 \times 0.05 \text{ mm}$
θ range for data collection	3.35 to 28.46°
Index ranges	$-16 \le h \le 10, -16 \le k \le 16, -17 \le l \le 18$
Reflections collected/unique	16390 / 9399 [R(int) = 0.0413]
Completeness to $2\theta = 28.46^{\circ}$	86.2%
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	9399/0/576
Goodness-of-fit on F^2	0.967
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0387, wR2 = 0.0868
R indices (all data)	R1 = 0.0605, wR2 = 0.0944
Largest diff. peak and hole	0.611 and -0.444 e.Å ⁻³

Table 2. Basic crystallographic data for [Ni(bzⁱprdtc)(PPh₃)₂]ClO₄·0.5H₂O.

Bond distances		Bond angles	
Ni(1)-S(2)	2.1823(9)	S(2)-Ni(1)-P(2)	93.35(4)
Ni(1)–P(2)	2.1892(8)	S(2)–Ni(1)–P(1)	164.92(2)
Ni(1)–P(1)	2.2070(9)	P(2)–Ni(1)–P(1)	100.20(4)
Ni(1)–S(1)	2.2182(8)	S(2)-Ni(1)-S(1)	78.50(4)
P(1)-C(31)	1.813(2)	P(2)–Ni(1)–S(1)	169.53(3)
P(1)-C(21)	1.814(2)	P(1)–Ni(1)–S(1)	88.73(4)
P(1)–C(41)	1.818(2)	C(1)–S(1)–Ni(1)	85.75(8)
P(2)–C(51)	1.803(2)	C(1)-S(2)-Ni(1)	86.93(8)
P(2)–C(61)	1.812(2)	N(1)-C(1)-S(2)	124.97(18)
P(2)–C(71)	1.813(2)	N(1)-C(1)-S(1)	126.87(18)
S(1)–C(1)	1.720(2)	S(2)-C(1)-S(1)	108.13(12)
S(2)–C(1)	1.719(2)		
C(1)–N(1)	1.304(3)		

Acknowledgment

This work was supported by the grant project No. 203/02/0436 from the Grant Agency of the Czech Republic.

REFERENCES

- 1. Thirumaran S. and Ramalingam K., Trans. Met. Chem., 25, 60 (2000).
- 2. Manohar A., Venkatachalam V., Ramalingam K., Casellato U. and Graziani R., *Polyhedron*, **16**, 1971 (1997).
- 3. Přibil R., Komplexometrické titrace, SNTL Praha 1955, p. 22.
- 4. Jureček M., Organická analýza II, ČSAV Praha 1957, p. 140.
- 5. Pastorek R., Kameníček J., Trávníček Z., Husárek J. and Duffy N., Polyhedron, 18, 2879 (1999).
- 6. Coucouvanis D., Progr. Inorg. Chem., 11, 240 (1970).
- 7. Sheldrick G.M., SHELXS-97; enhanced version of SHELX-S. Acta Cryst., A46, 467 (1990).
- 8. Sheldrick G.M., SHELXL-97; Program for crystal structure refinement. University of Göttingen, 1997.
- 9. Nardelli M., PARST 95, J. Appl. Cryst., 28, 659 (1995).
- 10. Geary W.J., Coord. Chem. Rev., 7, 81 (1971).
- 11. Scholer R.P. and Merbach A.E., Inorg. Chim. Acta, 15, 15 (1975).
- 12. Lever A.B.P., Inorganic Electronic Spectroscopy, Amsterdam, Elsevier 1984, p. 535.
- 13. Tsipis C.A., Kessissoglou D.P. and Katsoulos G.A., Chim. Chron., New Ser., 14, 195 (1985).
- 14. Ballester L., Gutierrez A., Perpinan M.F. and Ruiz-Valero C., Polyhedron, 15, 1103 (1996).
- 15. Březina F. and Benátská E., J. Thermal Anal., 22, 75 (1981).
- 16. Lide D.R., in: D.R. Lide (Ed.), Handbook of Chemistry and Physics, 73rd ed., CRC Press, Boca Raton, FL, 1992.